IMPACT OF MYCOTOXINS ON THE COST OF BROILER PRODUCTION

Josep Garcia Sirera, DVM, Ph.D. Special Nutrients

Livestock Asia 2015

Mold and Mycotoxin Contamination

In the field

Harvest

Transport and storage

Feed manufacturing

Mycotoxin Contamination

Corn Milo Wheat Barley Soya Silage

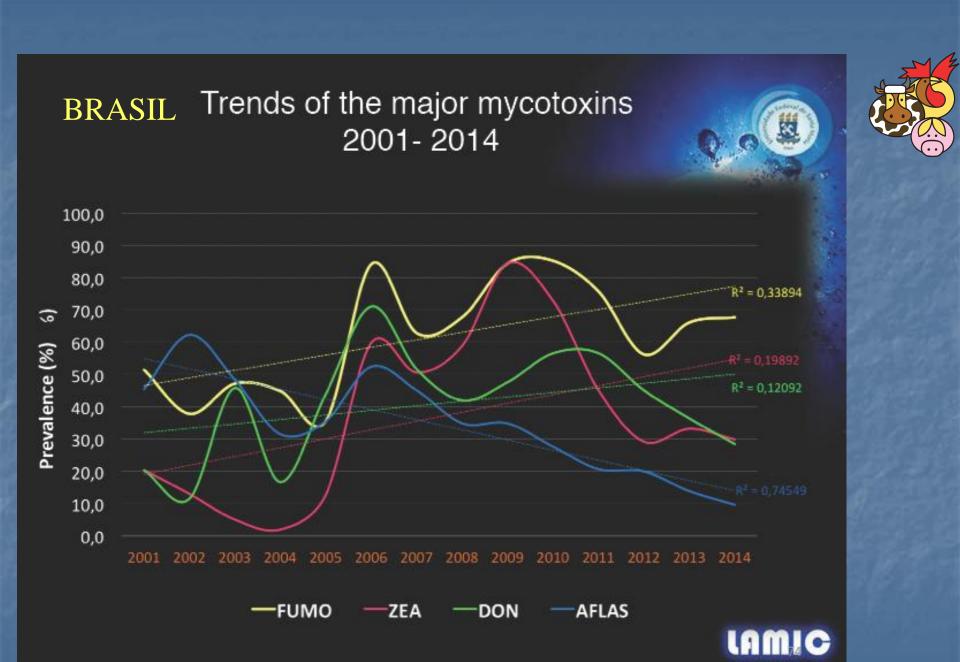
Silage Corn by-products Wheat by-products Rice by-products Global reports from total samples analyzed in the last 3 years

+ 70 % contaminated with one mycotoxin

+ 50 % contaminated with more than one mycotoxin

Mold

Mycotoxins



Aspergillus flavus Aspergillus parasiticus Penicillium sp. Aspergillus ochraceus

Fusarium roseum Fusarium tricinctum Fusarium moniliforme Fusarium graminearum Cyclopiazonic Acid Aflatoxins

Citrinin Ochratoxin

Trichothecenes T-2 toxin DAS diacetoxyscirpenol DON deoxynivalenol Zearalenone Fumonisin

JGS

Malaysia Raw Material Sources

Argentina
Brazil
United States
India
Pakistan

Malaysia Mycotoxin Contamination Trend

LCMS/MS Analysis result

Mycotoxin	Aflatoxin B1	DON	Ochr.A	Fumon. B1	T-2 toxin	ZEA
positive sample						
%						
2009-2011 %	8.5	17.9	7.6	66.0	0.9	15.1
2012-2013 %	21.1	30.1	9.8	66.2	0.8	33.8
2014 %	22	28	3	94	0	32
2015 up to date %	3.2	62.9	0	88.7	0	67.7
ELISA					and the	
Mycotoxin	Aflatoxins	DON	Ochrtxn	Fumos	T-2 toxin	ZEA
positive sample						
%						
2009-2011 %	26.1	55.0	1.4	64.3	0.0	12.1
2012-2013 %	38.5	62.1	10.5	69.2	8.0	18.5
2014 %	16	57	0	70	13	28
2015 up to date %	8.4	62.6	4.7	83.2	7.5	15.0

Most of the positive samples were tested contain more than 1 mycoto

Concerning levels of mycotoxins in poultry

Mycotoxin	Regulations Recommendations UE - EUA	Levels Field Problems
Aflatoxin	< 20 ppb	5 ppb
T-2 Toxin	< 500 ppb	100 ppb
Fumonisin	< 5000 ppb	1000 ppb
Vomitoxina (DON)	< 1000 ppb	200 ppb
Ochratoxin	< 20 ppb	5 ppb

Mycotoxicosis

- Type of mycotoxins
 - Quantity of mycotoxins
 - Combination of mycotoxins
- Age of animal

- Species of animal
- Time of exposure
- Nutritional and health status
- Interactions direct or indirect

Mycotoxins Impact on Broiler's Cost

Animals exposed chronically to mycotoxins show affected performance with major economical losses due to:

Cost of mold contamination
Cost of immunosuppression
Cost of productive performance
Cost of carcass yield and quality

Cost of mold contamination

Mold contaminated ingredients and/or feed present lower nutritional value due to usage of some nutrients by the fungus

Energy value of corn contaminated with molds

Ingredient	Metabolizable Energy (kcal/kg)	Crude Protein %	Crude Fat %	Crude Fiber %
Normal Corn	3410	8.9	4.0	3.1
Corn with Molds 2 months at 25°C *	3252	8.3	1.5	3.4

Metabolizable Energy before mold contamination 3344 kcal/kg Tindall, W., Salud y Nutrición Animal 4:5, 1983

Mold and the use of nutrients

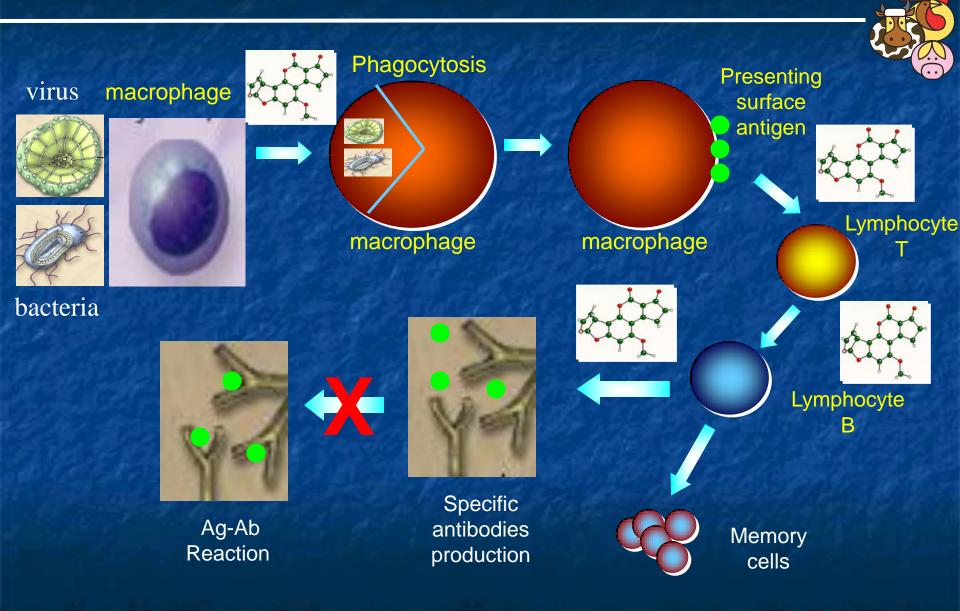
Reduction in carbohydrates and lipids decreases corn metabolizable energy in about 4 to 5 %

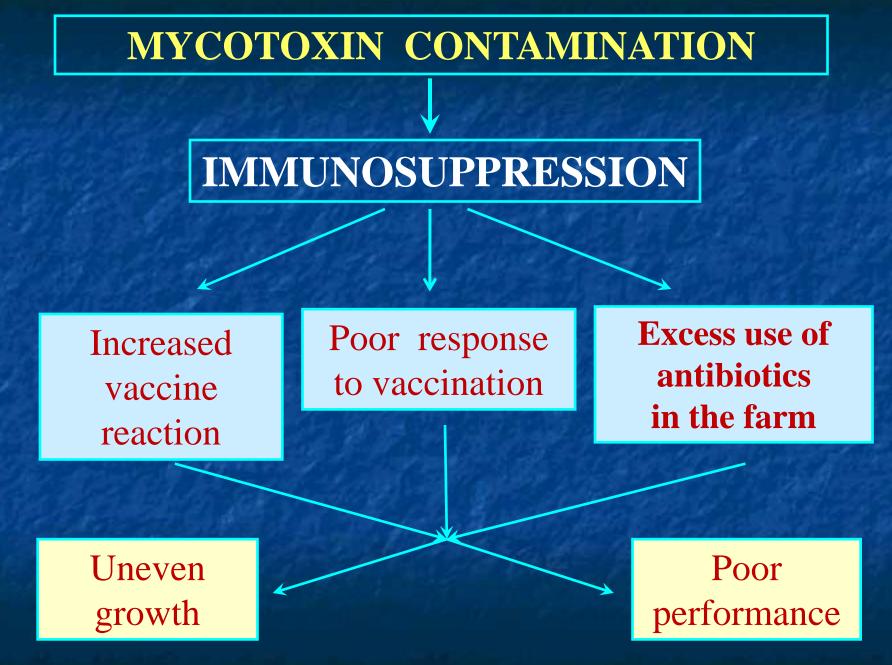
ME = 3350 - 100ME = 3250 kcal / kgME = 3350 - 150ME = 3200 kcal / kg

Molds use highly digestible nutrients with the consequent reduction of grain density

Fatty acids in complete feed contaminated with molds

Ducilou food	Oleic	Linoleic	Linolenic
Broiler feed	%	%	%
Without molds	1.352 a	3.047 a	0.114 a
Low level molds	0.807 b	1.993 b	0.063 b
Medium level molds	0.682 c	1.725 c	0.053 c
High level molds	0.593 c	1.511 d	0.022 d


Feed moistened with water to 17% humidity. Levels based on oxygen used. Kilburn and Wyatt, 2005.


Cost of immunosuppression

Mycotoxins with major incidence in the immune system: aflatoxin B1, ochratoxin A, T-2 toxin and fumonisin. Increase broiler susceptibility to a variety of infectious agents. Chronic infections are re-activated. Affect resistant to diseases through alteration in the defense mechanisms. Increase anti-coccidial doses of ionophors. Affect protecting capacity of vaccination programs

(Gumboro - Newcastle - Bronquitis)

Immune Response

Mycotoxins and uniformity in broilers

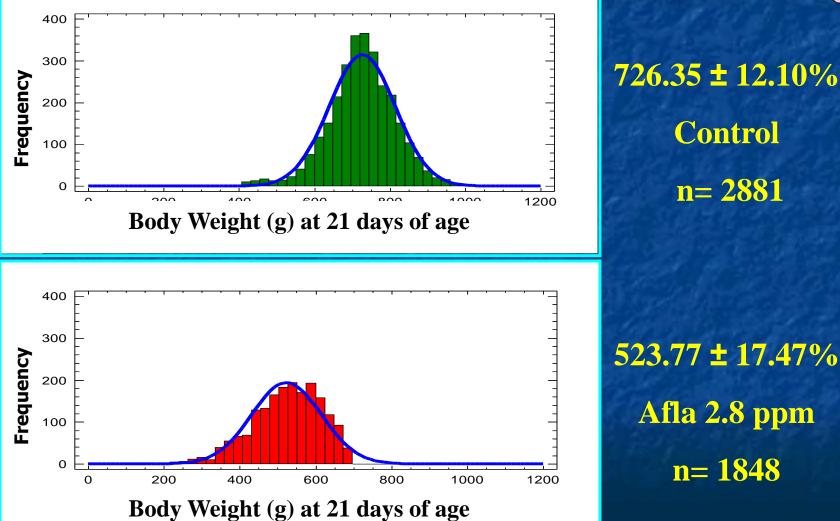
Post-vaccine reaction

Is there a practical way to evaluate the immune system ?

Ratio between bursa of Fabricius : spleen The size of the bursa of Fabricius should be 2 to 2.5 times greater than the size of the spleen during the first 28 to 30 days of age.

Normal Immune System in 21 day-old broiler chickens

Affected Immune System in 25 day-old broiler chickens


Cost of productive performance

Aflatoxin is the mycotoxin with the major negative impact on body weight gain in broilers; which is even worse when other mycotoxins are present simultaneously.

Aflatoxin, ochratoxin, T-2 toxin, fumonisin and DON affect feed conversion in broiler chickens on average 0.05 (0.03 - 0.10), depending on the combinations of mycotoxins.

Aflatoxin, ochratoxin, T-2 toxin, fumonisin and DON in field contaminations increase mortality on average 0.5% and up to 1% in the presence of high levels of several mycotoxins at the same time.

Aflatoxin and broiler weight / uniformity

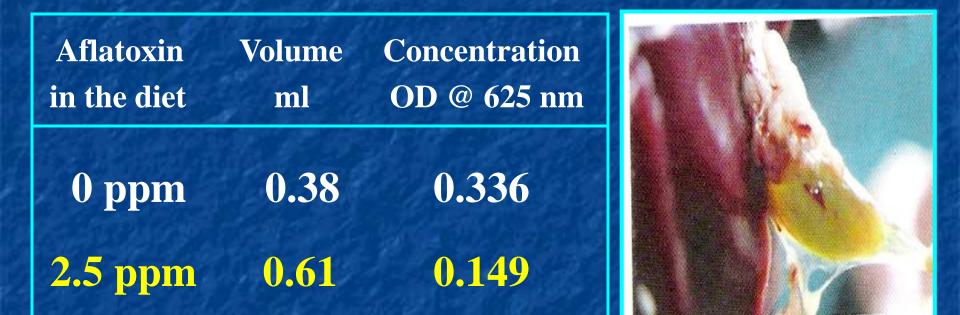
726.35 ± 12.10% Control **n= 2881**

Afla 2.8 ppm

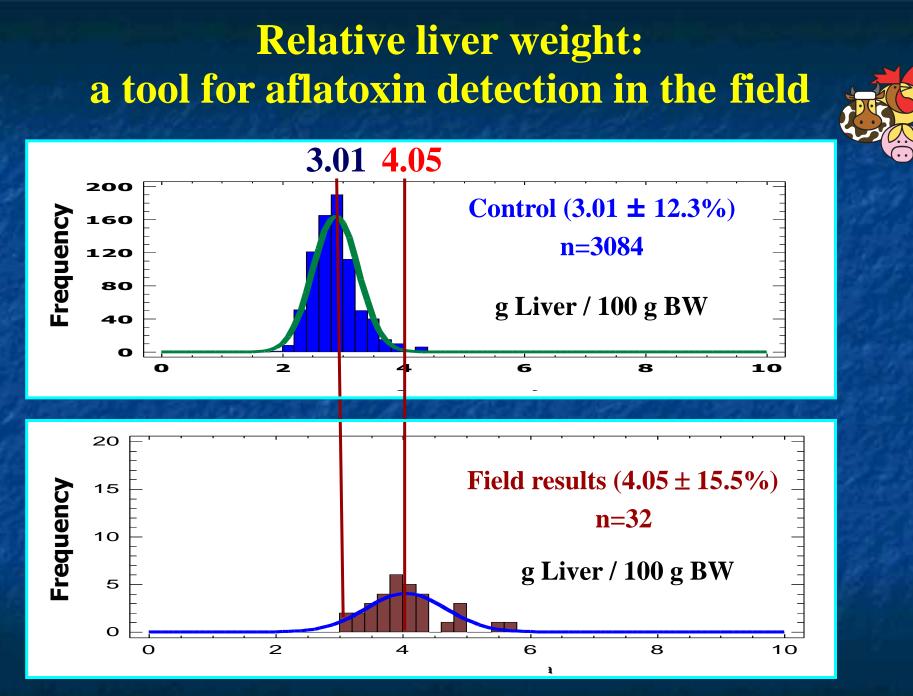
n= 1848

Effect of aflatoxin on growth

Normal dieta


Aflatoxin contaminated diet

Effect of aflatoxin on the activity of pancreatic digestive enzymes

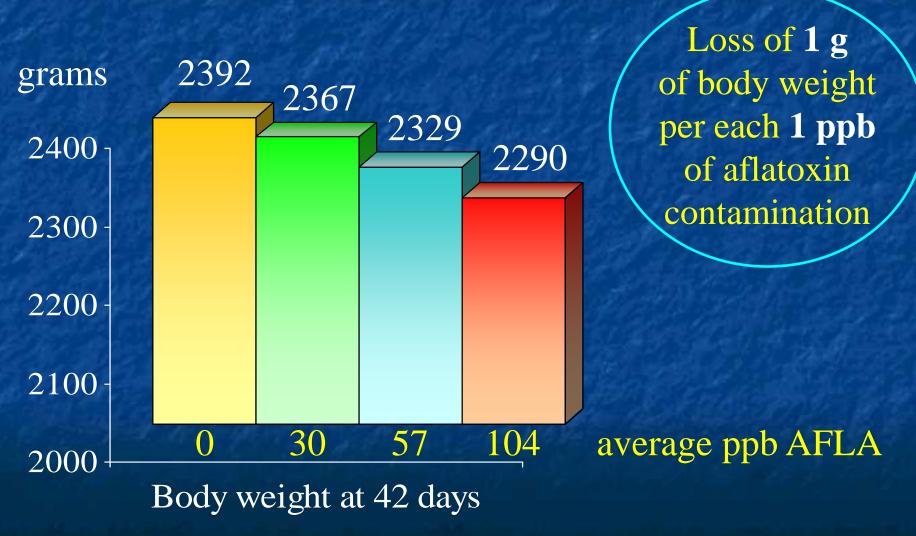

Diet	Digestive Activity (units / g of dry weight)		
Aflatoxin	Amylase	Trypsin	Lipase
0 ppm	281	46.2	292
2.5 ppm	179 *	35.8 *	191 *

Aflatoxin reduces 35% digestive enzymes activity

Aflatoxin effect on bile volume and concentration

Increase quantity with diminish quality of bile salts Bile salts very diluted without emulsification activity

Effect of T-2 + fumonisin + DON on intestinal integrity of broiler chickens


Normal Diet

Contaminated Diet

Field mycotoxins and body weight gain

9/28/2015

Cost of carcass yield and quality

- Aflatoxin and fumonisin create the major negative impact on carcass quality (bruises - hematomas - lacerations) which result in condemnations. Field contaminations can generate on average 0.55% (0.36 - 0.78%) condemnations
 - Aflatoxin, T-2 toxin, fumonisin and DON diminish skin pigmentation in broilers, with a reduction on average of **1 3 degrees** of the Roche color fan.
- Aflatoxin, ochratoxin and fumonisin increase liver size, making the liver fat and friable, impossible to sale. There is a reduction on liver sales of at least 1%.

Aflatoxin lesions: capillary fragility with petechial hemorrhages

Condemnation Problems

Effect of mycotoxins on broiler chicken processing

Tractmente	Condemnation (%)		
Treatments	Legs	Wings	Breast
Control	0	0	0
Aflatoxins	8.68	27.17	2.91
Fumonisins	0.80	15.56	1.86

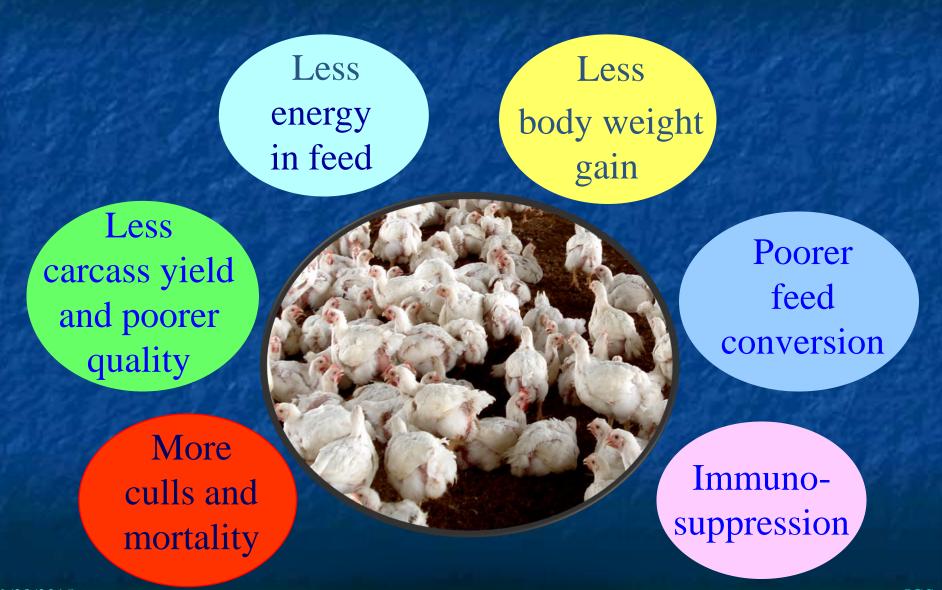
Dr. Mallmann 2008 LAMIC

Effect of aflatoxin on coagulation and prothrombin time in chickens

Aflatoxin B1 ppm	Coagulation Time seconds	Prothrombin Time seconds
0	252	13.3
0.625	233	14.0
1.25	281 *	14.0
2.5	383 **	16.6 *
5.0	419 **	22.1 **
10.0	556 **	26.2 **

Cost of carcass yield and quality

Fatty and friable liver inadequate for sale



Lack of pigmentation in the skin of broilers

Liver is 3% of body weight 1% inadequate for sale Reduction of 1-3 degrees in Roche color fan

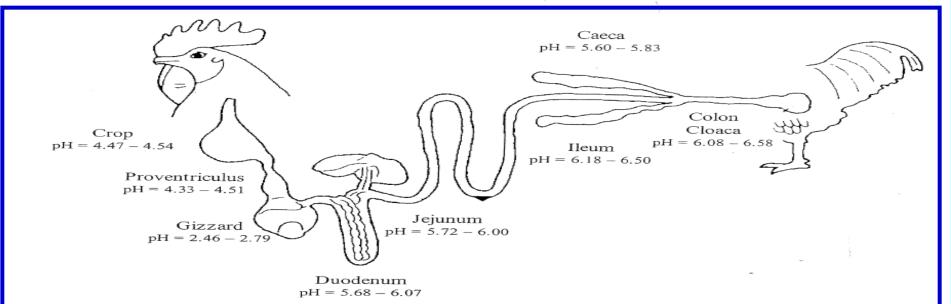
Economical losses due to molds and mycotoxins

9/28/2015

Mycotoxin Contamination

Average mycotoxins in broiler feeds in five Mexican integrations to evaluate economic losses. Price of chicken: U\$ 2.00 / kg

Mycotoxin analyses using immuno-assay kits


	AFLA ppb	T - 2 ppb	OCRA ppb	ZEA ppb	FUM ppb	DON ppb
Average	48	61	6	220	2700	510
Range	2 - 71	9 - 84	0 - 23	50 - 322	280 - 5630	60 - 810

Economical losses due to molds and mycotoxins

Indirect Cost of Mycotoxins

Necrotric Enteritis

	Proximal GIT	Small Intestine	Distal GIT
рН	3 - 5	6 - 7	7
Bacterial density cfu/g	10 ³ to 10 ⁵	10 ⁸ to 10 ⁹	10 ¹⁰ to 10 ¹²
Microbial population	Acid tolerant	Gm+ Facultative Aerobes	Anaerobes
Digesta passage rate	+++	++	+
Main species	Lactobacilli	Lactobacilli Clostridia Streptococcus Enterococcus	Clostridia Lactobacilli Bacteroides Coliforms Fecal Strep

DZD

Necrotic Enteritis Contributing Factors

Dietary ingredients

Inclusion of cereal grains ricch in water soluble non-starch polysaccharides such as wheat, barley or rye without effective enzymes. Increase intestinal mucus secretion.

High levels of soybean meal, lupin or beans due to the high levels of oligosaccharides. *Clostridium* but not chickens have enzymes to utilize these type of saccharides.

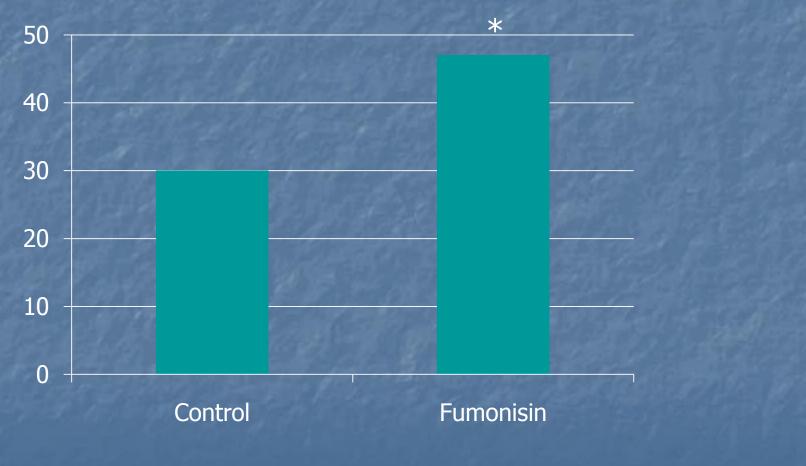
Necrotic Enteritis and Fumonisin

Control diet vs Fumonisin contaminated diet with 18.6 mg Fumo B1+B2 / kg feed

34 birds/pen, 3 pens per treatment

Gunter Antonissen, PhD Thesis WVPC, 2015

Necrotic Enteritis and Fumonisin


increase Sa/So ratio without effect of BW

 Changes in intestinal morphology: ileal villus height / crypt depth (497 vs 397 and 155 vs 131)

 Induce microbiota shift (ileum) : reduction of *Lactobacillus* and increase of *Clostridium perfringens*

> Gunter Antonissen, PhD Thesis WVPC, 2015

Necrotic Enteritis and Fumonisin

% Chicken with Necrotic Enteritis

Most critical prevention period in broilers

First 21 days of life

Maximum growth

Week 1 weight increases: 242 % Week 2 weight increases: 142 % Week 3 weight increases: 88 %

- Skeletal development
- Maximum digestive system relative weight (15 days)
 Development of immune system and lymphoid organs
 <u>Maximum metabolic activity</u>

Practical solution alternatives

Practical solution alternatives are limited to

Cleaning the grain(s) and good storage management
 Liver protection and increase production of glutathione

Mold inhibitors

Anti-Mycotoxins Additives (AMA)

Mycotoxins prevention and control

Grain cleaning

Liver protection

- Some nutrients such as choline, vitamin E, selenium and methionine have a hepatoprotector activity.
 - Choline participate in lipids mobilization.
 - Vitamin E and Selenium have antioxidant effect.
 - Methionine above the nutritional requirement increase the levels of glutathione in liver; which forms irreversible complexes with toxins.

Mycotoxins Prevention and Control

Mold inhibitors

Organic acids or their salts (propionic acid) Treatment of the grain and/or feed Corrosives

Anti-Mycotoxin Additives Effective Wide spectra Use at the correct dosage

THANK YOU!